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Abstract
The effect of thickness on the para–ferro-phase transition temperatures, the spontaneous
polarization and magnetization and hysteresis loops of 1–3 type multiferroic composite thin
films was studied in the framework of Landau phenomenological theory. We took into account
the electrostrictive and magnetostrictive effects, misfit strains induced from the interfaces of
ferroelectric/ferromagnetic portions and film/substrate. Butterfly loops under external fields
were also simulated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Multiferroic thin films have attracted much attention because of
their potential applications and interesting physical mechanics
[1–4]. Experiments using various methods have been
conducted to obtain materials with better performance and
stronger coupling effect [5, 6]. Usually, single phase
materials exhibit only small polarization and magnetization
at low temperatures because of the contra-indication between
magnetism and ferroelectricity [1]. An alternative route is
to combine the piezoelectric materials and magnetostrictive
materials. Many samples with different structures [7–9] have
been fabricated and large magnetoelectric (ME) effects were
achieved. The coupling effects in such composite thin films are
believed to be significant with respect to the elastic interaction.
Because of the high degree of crystallography orientation,
heteroepitaxial composites with spinal ferromagnetic (FM)
nanopillars in the ferroelectric (FE) matrix on proper substrates
have strong elastic interaction due to the coherency between
the phases [10–12].

It is well known that the misfit stress induced from the
substrate in a film can strongly affect the properties of FE

4 Author to whom any correspondence should be addressed.

and FM materials on the nano-scale. By adjusting the stress
induced from the substrate, the properties of the film can be
controlled. Good connectivity and large contact areas in 1–3
type composite films may result in a significant coupling effect
because of the elastic interaction both in the interface of the
two portions along the vertical direction and the interface of
the film/substrate [13–15]. The stress state in such a structure
is very complex because of the existence of dislocations,
coupling effects, different thermal expansion coefficients and
various defects. Many factors such as the lattice parameters
of each part, structure, elastic properties, electrostrictive and
magnetostrictive properties can also greatly affect the stress
state. In a perfect vertical epitaxial multiferroic composite thin
film, the misfit stress induced by the FE/FM and film/substrate
interfaces is a key factor to the properties of each component,
the stress state and the coupling effect [16, 17]. Stress fields
in the composite also have a significant effect on the phase
morphologies of the deposited film [18]. It is thus highly
desirable to study the stress state in the composites and the
ME coupling mechanics to guide the design of such materials.

Many theoretical works have investigated the coupling
effect in the nanoscale heterostructures and bulk composites
[3, 19]. Green’s function technique and phenomenological
theory have been developed to describe the coupling effect
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Figure 1. Illustration of calculation model. (a) Free standing states
of each part; (b) state with lattices well matched; (c) stress state of
each portion of the film, σP, σM, σs are the compressive stress of
BaTiO3 on CoFe2O4, the tensile stress of CoFe2O4 on BaTiO3 and
the average compressive stress of the substrate on the film,
respectively; (d) heterostructure of the 1–3 type with the FM phase
(grey) imbedded in the FE phase (crimson) on a rigid substrate
(blue); (e) cross section of one element. (Colour online.)

[20, 21]. However, only linear equations with respect to the
polarization, magnetization and external fields were used,
which does not agree with the experiments of the nonlinear
relationship [22].

In this work, we construct a general thermodynamic
function to investigate the effect of thickness on the properties
of 1–3 type multiferroic thin films based on the Landau
mean field theory and Timeshenko’s elastic theory. The
electrostriction and magnetostriction, misfit induced from
the interfaces of FE/FM and film/substrate were considered
substantially.

2. Thermodynamic model

A 1–3 type multiferroic thin film with the FM pillars (CoFe2O4)
embedded in the FE matrix (BaTiO3) grown on a rigid substrate
SrTiO3 was considered as shown in figure 1. Two local
coordinate systems were chosen for the FE and FM phases,
respectively. x, y and z are parallel to the [1 0 0], [0 1 0] and
[0 0 1] directions of the crystals (figure 1(e)). BaTiO3 is cubic
in the paraelectric phase and undergoes a cubic-to-tetragonal
phase transition when cooled below the critical phase transition
temperature [19]. The easy direction of the polarization will
be along the direction in which BaTiO3 is under tensile and/or
vertical to the direction in which BaTiO3 is under constraint.
CoFe2O4 is unique among ferrites because of its high values
of magneto-crystalline anisotropy and magnetostriction [23].
Most important, the lattice parameter is comparable to that
of BaTiO3. In the highly strained structure, the nanopillars
under constraint will have an easy axis along the z axis
[24]. We assumed that the direction of the single domain
magnetic component is perpendicular to the interface of the
film/substrate.

It is well known that the Curie temperature of FM materials
is usually very high and most FM materials are saturated in
the room temperature, so the magnitude of magnetization can
be assumed as a constant and the direction cosines of the
magnetization are often chosen as the variables, such as in
the Landau–Lifshitz–Gilbert theory. In this work, we mainly
focus on the spontaneous polarization and magnetization in the
coupling system other than the domain patterns and evolutions.
Ginzburg–Landau theory, which is very useful in the analysis
of phase transition and evolution of order parameters, is
adopted to describe the fields of spontaneous polarization and
magnetization in the FE and FM portions, respectively [25].
The spontaneous polarization P and magnetization M were
chosen as the order parameters. We defined P and M as
the summations of each small element in the FE and FM
portions, respectively. The coupling elastic interaction was
dealt with the Timeshenko elastic theory. Since the properties
of the material are the same along the x and y axes, the
order parameters can be simplified as functions of x and z.
The depolarization field may be great in a thin film, but
weak in cylinders, especially in the slim cylinders. Ignoring
depolarization when a short-circuited electric boundary is used
[26], the Helmholtz free energy of the system can be expressed
as a sum of the Landau free energies of separated FE and FM
portions, the coupling elastic energy and the surface energy
[10, 27, 28]:

F = FE
l + FM

l + Fsurf + Felas, (1)

where FE
l and FM

l are the Landau type bulk free energies of
the FE and FM phases, considering the gradient items because
of the inhomogeneous polarization and magnetization in the
surface and interface. For FE materials with a first order
phase transition and FM materials with a second order phase
transition, the bulk free energy density is described by the
conventional Landau-type expansions [27]:

FE
l = (1 − f )

∫
v

[
AE

2
(T − T E

c0 )P 2 +
BE

4
P 4 +

CE

6
P 6

+ 2
DE

44

2

(
∂P

∂x

)2

+
DE

11

2

(
∂P

∂z

)2
]

dv, (2)

FM
l = f

∫
v

[
AM

2
(T − T M

c0 )M2 +
BM

4
M4 + 2

DM
44

2

(
∂M

∂x

)2

+
DM

11

2

(
∂M

∂z

)2
]

dv, (3)

where AE , BE , CE , DE
44, DE

11 and T E
c0 are the Landau type bulk

free energy expansion coefficients and the Curie temperature
for the bulk FE phase. AM , BM , DM

44, DM
11 and T M

c0 are the
Landau-type bulk free energy expansion coefficients and the
Curie temperature for the bulk FM phase. T is the ambient
temperature. f is the volume fraction of the FM phase. v is
the volume of the element.

Fsurf is the surface energy describing the relaxation or
restriction energy of the FE and FM parts at the surface and
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the interface:

Fsurf = (1 − f )

∫
s

P 2

2δpz

ds + f

∫
s

M2

2δmz

ds

+ 2
∫

si

(
P 2

2δpx

+
M2

2δmx

)
ds, (4)

where s is the up and bottom surface areas of each element. si

is the interface area between the two phases. δpx , δpz and δmx ,
δmz are the extrapolation lengths along the x and z axes for
the FE and FM phases, respectively. The extrapolation length
describes the difference of the surface and the bulk [29, 30].

Felas is the coupled elastic energy. It can be calculated
by finding the elastic strain in each portion separately. The
summation of the elastic energies can be written as [16, 31]

Felas = FE
elas + FM

elas,

FE
elas = (1 − f )

∫
v

f E
elas dv, FM

elas = f

∫
v

f M
elas dv, (5)

where f E
elas = 1

2CE
ijkle

p
kle

p
ij = 1

2CE
ijkl(ε

p
kl − εE

kl)(ε
p
ij − εE

ij ),

f M
elas = 1

2CM
ijkle

m
kle

m
ij = 1

2CM
ijkl(ε

m
kl − εM

kl )(ε
m
ij − εM

ij ) are the
elastic energy densities in the FE and FM parts, respectively.
CE

ijkl and CM
ijkl are the elastic moduli and e

p
kl , em

kl are the
elastic strain of the FE and FM phases, respectively. ε

p
kl ,

εm
kl are the corresponding average total strains, which should

be solved through the mechanics balance equations. εE
kl and

εM
kl are with respect to the FE and FM spontaneous strains.

εE
ij = QE

ijklPkPl (P = (P1, P2, P3), k, l = 1, 2, 3), where Q

is the electrostrictive coefficient tensor. εM
ii = 3

2λ100(m
2
i − 1

3 ),
εM
ij = 3

2λ111mimj(i �= j, m = M/Ms) (m = (m1, m2, m3),
i, j = 1, 2, 3) [9], where λ100, λ111 are the magnetostrictive
coefficients of the cubic crystal along the [1 0 0] and [1 1 1]
directions. Ms is the saturation magnetization of the bulk
FM material. In the following, we use Voigt’s notation for
simplicity. A tensor λ is also introduced to describe the
magnetostrictive coefficient, where λ11 = λ22 = λ33 =
2/3λ100, λ12 = λ13 = λ23 = 0 and λ44 = λ55 = λ66 = 3

2λ111.
The electrostrictive strain εE

kl and magnetostrictive strain
εM
kl are mediated to each other through the interface of the two

portions. The external stress from the substrate due to the
lattice misfit between the substrate and the film, the relaxation
stress because of the dislocations and the internal stress in the
interface of the two portions induced by the lattice mismatch
of the FE and FM materials are also coupled together. All
the stresses should keep a mechanics balance. By solving
the mechanics and displacement balance equations, the elastic
strain and stress can be found, then we can derive the elastic
energy.

First, we found out the in-plane total strain. Considering
a rigid substrate and ignoring the distortion in the film, if the
lattices of the substrate and the film are the same, the average
total in-plane strain induced by the substrate can be written as
a function of the volume fraction

ε
p
11 = ε

p
22 = εm

11 = εm
22 = ε0

11 =
(√

f

ãm
+

1 − √
f

ap

)
aeff

s − 1,

(6)

where ap and am = 2ãm are the lattice parameters of the FE and
FM materials, respectively. Misfit dislocation formation will

relax the strain due to lattice mismatch between each phase.
The number of the dislocation varies with the thickness of the
film. We induced such a thickness-dependent relaxation by
using an effective substrate lattice parameter [32]

aeff
s = as

ρas + 1
, ρ = ε0′

11

a0

(
1 − hρ

h

)
, (7)

where as is the lattice parameter of the substrate and h is the
thickness of the film. ρ is the equilibrium linear dislocation
density at the deposition temperature,

ε0′
11 = 1 − 1

as
× ãmap√

f ap + (1 − √
f )ãm

and a0 = √
f ãm +(1−√

f )ap are the average misfit strain and
in-plane lattice parameter of the film at the growth temperature,
respectively. hρ = √

f hm
ρ + (1−√

f )h
p
ρ is the average critical

thickness. h
p
ρ and hm

ρ are critical thicknesses of the FE and FM
films, respectively, below which dislocation is not feasible.

Second, we derived the vertical total strain ε
p
33 in the FE

portion and εm
33 in the FM portion. They can be solved from the

mechanical equilibrium equation for the whole sample body
subjected to the surface free condition (1 − f )σE

33 + f σM
33 = 0

and the displacement consistent condition in the interface.
Both theories and experiments have shown that the strain
distribution along the x axis is not uniform because of the large
mismatch in the FE/FM interface [31]. We use an average
strain to approximate such a phenomenon. Because of the
small diameter of the pillars and the high quality of the epitaxial
heterostructure, we ignored the dislocations in the interface of
the FE and FM parts. The displacement consistent condition
in the interface can be written as

ap
ε

p
33

1 − f
− am

εm
33

f
= �.

� = ãm − ap is the lattice misfit of the two phases in the
vertical direction. The average total stress in the FE part ε

p
33

and in the FM part εm
33 can be written as

ε
p
33 = −1

C11E

(2C0
12ε

0
11 − qE

11P
2 + fm),

εm
33 = −1

C11M

(2C0
12ε

0
11 − qM

11M
2/M2

s + fp),

(8)

where C0
12 = (1 − f )CE

12 + f CM
12 , C11E = (1 − f )CE

11 +
(f 2/(1 − f ))CM

11
ap

am
and C11M = f CM

11 + ((1 − f )2/f )CE
11

am
ap

are the average elastic moduli considering the elastic coupling
interaction. qE

11 = (1 − f )(2CE
12Q12 + CE

11Q11), qM
11 =

f (2CM
12λ12 + CM

11λ11), fm = −f [(2CM
12λ12 + CM

11λ11)(m
2 −

1/3)+f CM
11(�/am)], fp = −(1−f )[(2CE

12Q12+CE
11Q11)P

2−
(1 − f )CE

11(�/ap)]. fm is the item of the magnetization
contribution to the polarization and fp is the reverse one.
Substituting the above results back into equation (5), the elastic
energy density functions can be obtained.

The temporal evolution of the polarization fields can
be derived by approaching the Helmholtz free energy at a
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rate proportional to the consequent Helmholtz free energy
change [33]:
∂P (x, z, t)

∂t
= −LE δF

δP (x, z, t)

= −LE(1 − f )

[
AE(T − T E

c0 )P + BEP 3 (9)

+ CEP 5 − 2DE
44

∂2P

∂x2
− DE

11
∂2P

∂z2
+

∂f E
elas

∂P

]
,

∂M(x, z, t)

∂t
= −LM δF

δM(x, z, t)

= −LMf

[
AM(T − T M

c0 )M + BMM3 (10)

− 2DM
44

∂2M

∂x2
− DM

11
∂2M

∂z2
+

∂f M
elas

∂M

]
,

where LE and LM are the kinetic coefficients concerning the
domain wall mobility. AM = T M

c0 /(2χ) and BM = 1/(2χ).
Variations of the expression for the elastic energy

(equation (5)) with respect to the polarization and the
magnetization order parameters are

∂f E
elas/∂P = −2P [(qc11 − 2qc33C

0
12/C11E)ε0

11

− fmqc33/C11E + 2P 3(qcq − qc33q
E
11/C11E)],

(11)

∂f M
elas/∂M = −2Mλ11/M

2
s

[
2(CM

12 − CM
11C

0
12/C11M)ε0

11

+
1

3
CM

11(λ11 − qM
11/C11M) − fpC

M
11/C11M

]
+ 2M3CM

11λ11/M
4
s (λ11 − qM

11/C11M), (12)

where qc11 = 2Q12(C
E
11 + CE

12) + 2Q11C
E
12, qc33 =

2Q12C
E
12 + Q11C

E
11, qcq = Q12[2Q12(C

E
11 + CE

12) + 2Q11C
E
12] +

Q11(2Q12C
E
12 + Q11C

E
11).

Substituting these results into equations (8) and (9),
the dynamic equations of the polarization and magnetization
considering the elastic interaction are
∂P (x, z, t)

∂t
= −LE δF

δP (x, z, t)

= −LE(1 − f )

[
AE∗

P + BE∗
P 3 + CEP 5 (13)

− 2DE
44

∂2P

∂x2
− DE

11
∂2P

∂z2

]
,

∂M(x, z, t)

∂t
= −LM δF

δM(x, z, t)

= −LMf

[
AM∗

M + BM∗
M3 (14)

− 2DM
44

∂2M

∂x2
− DM

11
∂2M

∂z2

]
,

where

AE∗ = AE(T − T E
c0 ) − 2

[ (
qc11 − 2

qc33

C11E

C0
12

)
ε0

11

− qc33

C11E

fm

]
,

BE∗ = BE + 2

(
qcq − qc33

C11E

qE
11

)
,

AM∗ = AM(T − T M
c0 ) − 2λ11/M

2
s

[
2

(
CM

12 − 2
CM

11

C11M

C0
12

)
ε0

11

+
1

3
CM

11

(
λ11 − qM

11

C11M

)
− CM

11

C11M

fp

]
,

BM∗ = BM + 2/M2
s λ11C

M
11

(
λ11 − CM

11

C11E

qM
11

)
.

The surface items yield the boundary conditions as

∂P

∂z
= ∓ P

δpz

(
z = ±h

2

)
; ∂P

∂x
= − P

δpx

(x = lp),

∂P

∂n
= 0, (x = 0), (15)

∂M

∂z
= ∓ M

δmz

(
z = ±h

2

)
; ∂M

∂x
= − M

δpx

(x = lm),

∂M

∂n
= 0, (x = 0),

where lp = (1 − √
f )l and lm = √

f l by considering element
length l of the sample as shown in figure 1(d). h is the thickness
of the film.

2.1. Critical conditions and the phase transition temperatures

According to the linear stability analysis, the phase transition
temperature is relative to the linear item of the evolution
equation. The thickness effect on the phase transition
temperature can be studied to probe other material properties
according to some phenomenological relations. Using
the linear analysis theory [34], we apply infinitesimal
perturbations �p and �m to the trivial stationary solutions
P0 = 0 and M0 = 0. Neglecting the small higher order terms,
equations (9) and (10) become

∂�p

∂t
= −LE(1 − f )

(
AE∗

�p − DE
11

∂2�p

∂z2
− 2DE

44

∂2�p

∂x2

)
,

(16)

∂�m

∂t
= −LMf

(
AM∗

�m − DM
11

∂2�m

∂z2
− 2DM

44
∂2�m

∂x2

)
.

(17)

By separating variables and applying the boundary
conditions, we can find the para–ferro temperatures [33]

T E
c = T E

c0 − 1

AE
(DE

11k
2
pz + 2DE

44k
2
px) +

2

AE
[(qc11

− 2qc33C
0
12/C11E)ε0

11−fmqc33/C11E], (18)
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T M
c = T M

c0 − 1

AM
(DM

11k
2
mz + 2DM

44k
2
mx)

+
2

AMM2
s

λ11

[
(CM

12 − CM
11C

0
12/C11M)2ε0

11

− CM
11fp/C11M +

1

3
CM

11(λ11 − qM
11/C11M)

]
. (19)

The smallest values of kpz, kpx , kmz, kmx can be found
from the boundary conditions. Substituting the results into
equations (18) and (19), we can obtain the critical temperatures
for the phase transitions.

2.2. Spontaneous polarization and magnetization

For applications of multiferroic memories and some
multifunctional devises, large spontaneous polarization and
magnetization are expected. In these 1–3 type heterostructures,
the spontaneous polarization and magnetization are coupled
together though the interface of the two portions. The
evolution of the spontaneous polarization and magnetization
can be obtained by numerically solving the time-dependent
Ginzberg–Landau equations (12) and (13) subjected to the
boundary conditions. We use the finite-difference method for
the time and spatial integration. In each time step, the average
polarization and magnetization are calculated to substitute into
the stress formulae for the next time step integration. The
spontaneous polarization and magnetization can be found in
the stable state of the coupling equations at zero external fields.

2.3. Stress field

As shown in equation (8), the average total stress in the FE
part ε

p
33 and in the FM part εm

33 are coupled together though
the items fm and fp. Both ε

p
33 and εm

33 are functions of
spontaneous polarization P and magnetization M . To probe
the final stress fields in each composite, we should first derive
the stable polarization and magnetization in each composite.
The stable polarization and magnetization fields, which is
spatially inhomogeneous, can be solved from the dynamic
evolution equations by using the numerical method. The
average P and M can be derived though 〈P 〉 = 1/vp

∫
vp

P dv,

〈M〉 = 1/vm
∫
vm

M dv, vp and vm are the volumes of the FE
and FM portions in the calculated element. Substituting the
average P and M back into equations (7), the average vertical
total strains in each portion can be found.

2.4. Hysteresis loops

Hysteresis loops, as an important profile of the FE and FM
materials, have not been studied for multiferroic composites in
a theoretical approach. We use the Landau–Khalatnikor theory
to simulate the hysteresis loops [35]. We note that it is just a
mathematic approach other than the real physical process, in
which the coupled states in FE and FM portion should be real
at each time.

We assume that the lattices of each component are matched
well, and the FE and FM components have the same thickness
(as shown in figure 1(b)). Each part can be considered as the

stacking of thin layers with a finite thickness �z = (h/N)

along the z direction. h is the thickness of the film and N is the
number of this layer stack. If the origin is located at the bottom
of the film surface, then an arbitrary layer located at a position
z can be identified by the index i, z = i�z. The polarization,
magnetization and the vertical external fields (with the same
direction with the polarization) within this layer are denoted
by P (i), M(i) and E(i), H(i) in the layer i. The total free energy
of the system FT then can be written as the summation of each
layer’s energy [16]:

FT =
N∑

i=1

F
(i)

lE + F
(i)

lM + F
(i)
E + F

(i)
H + F

(i)

ela + F
(i)

surf , (20)

where F
(i)

lE and F
(i)

lM are the Landau type bulk free energies of
the FE phase and FM phases in the i layer, respectively; F

(i)
E =

−E(i)P (i) and F
(i)
H = −H(i)M(i) are the energy induced by

the external electric and magnetic fields, respectively; F
(i)

ela is
the elastic energy; F

(i)

surf is the surface energy describing the
relaxation of the surface lattices and the relaxation or restriction
of the interfacial lattice. F

(i)

lE , F
(i)

lM and F
(i)

surf can be expressed
as follows:

F
(i)

lE = (1 − f )

∫
v

[
AE∗

2
(T − T E

c0 )(P (i))2 +
BE∗

4
(P (i))4

+
CE

6
(P (i))6 + κ

(i)
E (P (i) − P (i−1))2

]
dv, (21)

F
(i)

lM = f

∫
v

[
AM∗

2
(T − T M

c0 )(M(i))2 +
BM∗

4
(M(i))4

+ κ
(i)
M (M(i) − M(i−1))2

]
dv, (22)

F
(i)

surf = (1 − f )

∫
s

(P (i))2

2δpz

ds + f

∫
s

(M(i))2

2δmz

ds

+
∫

si

(
(P (i))2

2δpx

+
(M(i))2

2δmx

)
ds. (23)

κ
(i)
E and κ

(i)
M are the coupling coefficients between the nearest

neighbouring layers.
The dynamic equations of the polarization and magneti-

zation considering the elastic interaction are

∂P (i)

∂t
= −LE δF (i)

δP (i)
= −LE(1 − f )[AE∗

P (i) + BE∗
(P (i))3

+ CE(P (i))5 − E(i) − κ
(i)
E (P (i+1)

+ P (i−1) − 2P (i))], (24)

∂M(i)

∂t
= −LM δF (i)

δM(i)
= −LMf [AM∗

M(i) + BM∗
(M(i))3

− H(i) − κ
(i)
M (M(i+1) + M(i−1) − 2M(i))]. (25)

The surface items yielded the boundary conditions as

∂P (i)

∂z
= ∓P (i)

δpz

,
∂M(i)

∂z
= ∓M(i)

δmz

(
z = ±h

2

)
.

(26)
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Table 1. Parameters of the FE and FM phases.

BaTiO3 CoFe2O4

CE
11 = CE

22 = CE
33 = 1.76 × 1011 N m−2 CM

11 = CM
22 = CM

33 = 2.86 × 1011 N m−2

CE
12 = CE

13 = CE
23 = 0.846 × 1011 N m−2 CM

12 = CM
13 = CM

23 = 1.73 × 1011 N m−2

Q11 = Q22 = Q33 = 0.11 m4 C−2, λ100 = −590 × 10−6

Q12 = Q13 = Q23 = −0.043 m4 C−2 λ111 = 120 × 10−6

ap = 0.399 94 nm (as = 0.3905 nm), am = 0.838 nm, ãm = 0.419 nm,
hp

ρ = 25 nm hm
ρ = 25 nm

AE = 6.6 × 105 m F−1 K−1 Ms = 300 × 103 A m−1

BE = 14.4 × 106 × (T − 448.15) m5 C−2F−1 χ = 0.6 × 104 A m−1 T−1, T M
c0 = 793 K

CE = 3.96 × 1010 m9 C−4 F−1 DM
11 = 7.2 × 10−17, DM

44 = 3.6 × 10−17 J m A−2

DE
11 = 2.7 × 10−9, DE

44 = 0.45 × 10−9 m3 F−1 δmx = δmz = 43 nm
δpx = δpz = 43 nm

With the discretized time index j , the time-dependent
polarization and magnetization at each layer are denoted by
P (i)(j) and M(i)(j). The time-dependent external sinusoidal
electric field and magnetic field applied along the z direction
are given by E(i)(j) = E0 sin(2πf E

n j�t) and H(i)(j) =
H0 sin(2πf M

n j�t), respectively. E0, H0 and f E
n , f M

n are the
amplitude and frequency, respectively. By taking the forward
difference in time for the left-hand side of equations (23) and
(24), we can obtain the polarization and magnetization of each
layer at each time. The average values at each discretized time
point are the summations of each layer divided by the total
layer number.

3. Results and discussions

We took BaTiO3–CoFe2O4 as an example on a SrTiO3

substrate system. The parameters taken from [20, 36] are
listed in table 1. Because of the limited experimental data,
DM

11, DM
44 and critical thicknesses h

p
ρ and hm

ρ were given with
considerable values. The values of the extrapolation lengths
are usually about 5–45 nm for BaTiO3; here, 43 nm is used for
the two phases, which may add some discrepancy especially
when the volume fraction of portion is very small. The total
length of the sample l was taken as 100 nm.

Firstly, we give the para–ferro phase transition
temperatures under different thicknesses of the film (figure 2).
Since the critical temperature of CoFe2O4 is usually higher
than that of the BaTiO3, we set P = 0, m = 1 in figure 2(a)
and P = 0, m = 0 in figure 2(b) as initial states to derive the
para–ferro phase transition temperatures. The results show a
significant decrease in phase transition temperatures for both
parts with the increase in thickness. It is well known that
the critical phase transition temperatures are very sensitive
to the stress which is induced by the misfit stress induced
from the film/substrate or other stress/strain projects [36, 37].
The misfit stress from the film/substrate is highly dependent
on lattice parameters and the volume fractions of each part.
Because of the dislocations during the growth of films, the
misfit stress is also highly dependent on the film thickness
because of the relaxation of the stress with the increase in the
film thickness. In the 1–3 type BaTiO3–CoFe2O4 structure,
the misfit stress is very large, especially in the interface of the
two phases along the vertical direction. So the properties of

Figure 2. Para–ferro phase transition temperature. (a) BaTiO3,
P = 0 and m = 1; (b) CoFe2O4, m = 0 and P = 0.

such highly strained structure can be very different from those
of the bulk counterparts. The large misfit stress is also the main
cause of the increase in the phase transition temperature.

To investigate the spontaneous polarization effect on
the phase transition temperature of the FM portion and the
spontaneous magnetization effect on the phase transition
temperature of the FE portion, we contrast phase transition
temperatures between the initial value of P = 0, m = 1
and the value of P = 0, m = 0 for BaTiO3 as shown in
figure 3(a) and the initial value of m = 0, P = 0 and
the value of m = 0, P = 0.25 for CoFe2O4 as shown

6
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Figure 3. Difference of phase transition temperature (a) between
the initial value of P = 0, m = 1 and the value of P = 0 and m = 0
for BaTiO3; (b) between the initial value of m = 0, P = 0 and the
value of m = 0, P = 0.25 for CoFe2O4.

in figure 3(b). As anticipated, the spontaneous polarization
induced phase transition temperature of the FM portion is
large, while the spontaneous magnetization induced phase
transition temperature of the FE portion is small. As
shown in the analytic expressions of the phase transition
temperatures (equations (18) and (19)), the magnetostriction
and electrostriction are very important factors for the direct
coupling effect. Although the magnetostriction of CoFe2O4

is large among the ferries, it is still small compared with
the electrostriction of BaTiO3. The induced magnetostrictive
strain is much smaller than the electrostrictive strain and the
misfit strain induced by the lattice mismatch. This is why
the ME effect is usually not very significant. Although the
decrease in FE phase transition temperature between m = 0
and m = 1 is small compared with its bulk Curie temperature,
it is very helpful to design agile devices and microwave
devices [38].

As illustrated above, the spontaneous polarization and
magnetization is also highly thickness and volume fraction
dependent (figure 4). The sharp decrease in polarization
and increase in magnetization are mainly caused by the
surface effect. In fact, just as the change in temperature,

Figure 4. Spontaneous polarization (a) and magnetization (b)
versus the volume fraction under different film thicknesses (inset is
the zoom in the frame for easy view).

the polarization has little change with the increase in the
magnetization value. But the change in polarization can still
give a visible increase in magnetization as shown in the inset
of figure 4(b). We know that the ME effect is small in the
2–2 type because of the clamp of the substrate, and the 1–3
type structure had a higher ME effect. Although it is a better
structure, the clamp effect is still large due to the large misfit
strain. A better solution may be to find appropriate materials
with comparable lattice parameters, most importantly, with
comparable magnetostriction and electrostriction.

To give a clear stress field of the system, we gave the
average total stresses (figure 5). Both the substrate induced
transverse total strain (ε0

11) and the resulting vertical strains
considering the misfit of the two parts (εp

33 and εm
33) have a

significant thickness effect and volume fraction dependence.
In the BaTiO3 portion, an in-plane constraint and/or an
out-of-plane tension will increase the electric polarization
in the vertical direction, while in the CoFe2O4 portion,
with a negative magnetostrictive coefficient, an out-of-plane
constraint will help the magnetic polarization in the vertical
direction. The 1–3 type of this composite is helpful for both
phase transitions in the vertical direction. But because of
the negative average in-plane stress ε0

11, the value of average
vertical strain in the FM part εm

33 is negative when f is
only less than about 0.4 and turns out to be positive as the

7
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Figure 5. Average in-plane total strain ε0
11, vertical strains in the FE

portion ε
p
33 and vertical strain in the FM portion εm

33 under different
film thicknesses.

volume fraction of the FM part increases, which hampers
the FM phase polarization. Besides, the stress induced by
the spontaneous polarization will weaken the compression
in the vertical direction and hamper the magnetization phase
transition and vise versa.

Finally, we simulated hysteresis loops under different
external fields mathematically. Many experiments have
shown that multiferroic composites have different responses
to different external fields [39, 40] (such as dc/ac single field,
double field, pulse field). Because of the effect of the external
stress induced from the substrate and the interface stress
between the two portions, the P and M are enhanced as
expected. Of our interest is the basic function of multiferroic
materials, that is, the magnetization simulated by the external
electric field and the polarization by the external magnetic
field. We plot the M–E and P –H loops as shown in figure 6.
Butterfly loops exist under ac external fields with big enough
amplitudes. Because of the second order relationship of stress,
there is no reversion of order parameters, that is, the single-
cross-field induced polarization or magnetization are always in
the same direction with the value changed as a butterfly loop.

4. Conclusions

We investigated the effect of thickness on the stress state in
a composite of BaTiO3–CoFe2O4 film on a SrTiO3 substrate
system using Landau phenomenological theory. The misfit
stress induced by the lattice mismatch from the FE/FM and the
film/substrate interfaces can significantly affect the properties
of each component in the multiferroic composite structure,
but the direct elastic interaction is small because of the small
magnetostriction and the clamping effect of the mismatch
strain. Well-matched heterostructures made up of materials
with comparable magnetostriction and electrostriction are
suggested for reaching a large ME effect.

Figure 6. (a) Butterfly loops of spontaneous polarization of BaTiO3

on the external magnetic fields with different amplitudes;
(b) butterfly loops of magnetization of CoFe2O4 on the external
electric fields with different amplitudes.
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